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Abstract

The dynamic anti-plane problem for a functionally graded piezoelectric strip containing a periodic array of parallel
cracks, which are perpendicular to the boundary, is considered. Integral transforms techniques are employed to reduce
the problem to the solution of singular integral equations. Numerical results are presented to show the influences of
geometry, electromechanical combination factor and material gradient parameter on the fracture behavior.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Since piezoelectric materials are widely used as actuators and sensors in the smart and adaptive struc-
tures. To prevent failure during service and to secure the structural integrity of piezoelectric devices, under-
standing of the fracture behaviors of these materials become increasingly important. Up to now, a number
of studies have been performed for the cracked piezoelectric materials (see e.g., Deeg, 1980; Pak, 1990;
Sosa, 1991; Suo et al., 1992; Park and Sun, 1995; Sosa and Khutoryansky, 1996; Wang and Yu, 2000;
Meguid and Chen, 2001; Kwon and Lee, 2001). Among these works, several scholars considered the frac-
ture problem of periodic cracks in the homogeneous piezoelectric medium or along the interface of
bimaterials (see, e.g., Gao and Wang, 2000; Hao, 2001; Gao et al., 2004). In order to adopt the complex
function technique to analyze these problems, the periodical cracks are generally assumed to be collinear.
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In addition, since the piezoelectric materials are generally brittle and susceptible to crack, in order to
enhance the strength of piezoelectric devices and elongate their service life, the functionally graded piezo-
electric materials (FGPMs), in which the material properties are continuously varied in one or more direc-
tions, have been developed (Wu et al., 1996; Zhu et al., 2000). Accordingly the fracture behaviors of
FGPMs have become an intensive point. Wang and Noda (2001) discussed the fracture behavior of a
cracked FGMP structure under the thermal load. Li and Weng (2002), Jin and Zhong (2002) considered
the mode III Yoffe-type moving crack problem in a FGPM strip and in an infinite FGPM, respectively.
Ueda (2003) solved the static mode I1I crack problem in a FGPM strip bonded to two elastic layers. Kwon
(2003) studied the electrical nonlinear anti-plane shear crack in a FGPM strip. Chen et al. (2004) investi-
gated the mixed mode crack problem in a FGPM plate.

In the past, several scholars studied the elastic problem of periodical cracks in functionally graded
materials. For example, Erdogan and Ozturk (1995) studied the anti-plane problem of periodical
cracks in functionally graded coatings. Choi (1997) investigated the problem of a periodical array of
parallel cracks in a functionally graded medium under in-plane normal and shear load. However,
to the authors’ knowledge, few papers considered the solutions for the problem of periodical cracks in
FGPM.

This paper considered the problem of a FGPM strip containing a periodical array of parallel cracks,
which are perpendicular to the boundary. Integral transform technique is used to reduce the problem to
the solution of singular integral equations. Numerical results are presented to discuss the possible fracture
behaviors.

2. Formulation of problem

As shown in Fig. 1, a FGPM strip, which is transversely isotropic and poled in z-direction, contains the
periodical cracks perpendicular to the boundary.

2c

|—>
o
y
4

———

\/_\

Fig. 1. Geometry of the crack problem.
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The constitutive relations can be expressed as
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where w and ¢ are the mechanical displacement and electric potential; ¢.;, Dy, Ey (k= x,y) are the com-
ponents of anti-plane shear stresses, in-plane electric displacements and electric fields; c44, p, €5, €11 are the
shear modulus, mass density, piezoelectric coefficient and dielectric parameter, respectively.

It is assumed that the shear modulus, mass density, piezoelectric coefficient and dielectric parameter of
FGPM coating vary smoothly according to exponential function along the thickness direction (e.g., Erdo-
gan and Ozturk, 1995; Kwon, 2003). To make the analysis tractable, the focus is limited on a special class of
FGPMs in which the variations of theses properties are in the same gradient.

Therefore,

B
Caq = C44oeﬁx7 e;s = elsoeﬁx7 & = Slloeﬁx7 p = Poe/x (2)

where c440, Po, €150, €110 are the material properties at x = 0. By introducing the Bleustein function (Bleu-
stein, 1968) given by yy = ¢p—(e1s50/e110)w in the form, the governing equations may be expressed as
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where V2 = 0%/0x? 4+ 0%/0y” is the two-dimensional Laplace operator, and the shear wave speed of the pie-
zoelectric is

e = g/ po (4)

where Kty = Caq0 + 6%50/8110.

When the crack surfaces are assumed to be electrically permeable, it is found that the fracture behavior
of piezoceramics will be independent of electrical loading (see, e.g., Wang and Yu, 2000), and this is con-
trary to many existing experimental results. Therefore, the electrically impermeable crack face condition is
adopted here.

We will assume that through a superposition the problem is reduced to a local perturbation problem in
which self-equilibrating crack surface tractions are the only non-vanishing external loads. Because of peri-
odicity, it is sufficient to consider the problem for 0 < y < ¢ only. Thus, the boundary and continuity con-
ditions can be written as

w(x,c,t) = ¢p(x,c,t) =0, 0<x<h (5)
0.(0,y,6) =D,(0,y,) =0, 0<y<c (6)
ou(h,y,t) = Di(h,y, 1) =0, 0<y<c (7)
6,(x,0,1) = tW)H(1), Dy(x,0,8) = DO)H(), a<x<b (8)

w(x,0,1) = ¢(x,0,1) =0, O<x<a, b<x<h 9)
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3. Integral equations

Let the Laplace transform pair be written as:

1
C2mi

£s) = / T fwerdn, £ F(s)e” ds (10)

in which Br stands for the Bromwich path of integration. The variable ¢ in Egs. (3) can be eliminated by the
application of Eq. (10). By expressing the solution of Egs. (3) in terms of the sums of finite and infinite Fou-
rier transforms, it can be shown that
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where A (o, 5), Bia(Vk,S), Ba(Vk>8), Ci2(2,5), D1y, $), and Doy, s) are unknown functions to be deter-
mined and
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From Egs. (1), (2) and (11), the stresses and electric displacements are obtained as follows:
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Introducing the following functions
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and substituting Egs. (11) into (14), from Egs. (5) and (9) it follows that
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If we now substitute from Eqgs. (13) and (15) into Egs. (6) and (7) it can be shown that
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From Egs. (16), the unknown By;, By, Di; and D,; may then be obtained as follows:
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By substituting Eqs. (17) into Egs. (13), we obtain
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where
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Egs. (18) would then provide the integral equation to evaluate g(x,s) and g-(x, s). In order to determine
the correct singularity of the unknown functions gi(x,s) and g»(x,s) and to develop an efficient method to
solve the integral equations, the singular behavior of the kernels Fy, |, F> and F’, must be examined. Note
that for o« — oo we have
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The kernels F, and F, are given in terms of infinite series. Therefore any singular behaviors F» and F),
may have would be due to the asymptotic nature of these series. From Eqgs. (12) it may be seen that for
j— oo we have

Li = Vi Py — =V Py — Vp i} = Vi dy 7 TV by 7Y (25)
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If we now let
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where
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The integral equations (30) will be solved for different crack types, that is, for internal crack and edge
crack problem. To solve this integral equation for the case of an internal crack, one must also implement
the single valuedness condition

b b
/ g1(u,s)du =0, / g (u,s)du=0 (33)
Defining the following normalized quantities:
b—a b+a b—a b+a
b—a , b—a_,
81 (u,S) = (b](f,S), gz(”»S) = ¢2(éas)7 K(@’I»S) = Tk(uaxas)a K (57”75) = Tk (M,X,S)
Tx) D(x) _
*y*.fl(ﬂ)a T b = f2(n)
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the integral equations (30) can be written to accommodate both internal and edge crack problem where
a=0

b 2
fl(n) = l / { |: cun + :uOK(é7 ’7;5) - @K,(éa 11,S):| d)l(éas) + eiso |:

s T E—n €110
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b
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For the internal crack problem, defining
pies) =R e =TE i cean (36)

Vi-& V1i-¢&
and using the Lobatto—Chebyshev integration formula, the singular integral equations (35) and the single-
valuedness condition (33) are reduced to an 2n X 2n system of liner equations in terms of discrete values of
$1(&;,5) and ¢o(&,s) (j = 1,...,n) that are then solved numerically.

After determining ¢4(&,s) and ¢,(&,s) the stress intensity factors (SIFs) and electric displacement inten-
sity factors (EDIFs) are determined as

. b—a
Kiy(a,s) = 11112 V2(x — a)(r;z(x,O,s) = eﬁa\/ 3 [casoR(—1,5) + e150T(—1,5)]
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Recently, some investigators found that the energy density factor (EDF) is an essential quantity for ana-
lyzing the piezoelectric crack growth behavior (Sih and Zuo, 2000; Zuo and Sih, 2000; Soh et al., 2001;
Chen et al., 2004). For the anti-plane problem, the energy density factor is defined as

S = lim %(rzxazx + 6 + DoEy + D,E,) (38)

in which r has been referred to as the core region within which microstructure effects become important.
For the internal crack problem, EDF can be expressed in terms of SIF and EDIF as

1 e c
S][](d,f) = [K%H((Lt) — %K”[(a,t)KD((Lt) + Z%KZD(CLZ)]

8 uyele
(; e C. (39)
Sulb,t) =g [K3u(B.0) = Soe K (b, 0K (b,) + 25 K3 (b,1)]

It can be easily found that EDF is always positive. For the pure mechanical case, EDF is equivalent to
the traditional definition of energy release rate.

In the case of an edge crack at x =0 the kernel F>.(x,0,s,u) and F’, _(x,0,s,u) are singular and with
1/(u — x) constitute a generalized Cauchy kernel. At this time, the unknown density function ¢;(¢,s) and
¢2(&,s) can be expressed in the form
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B R(&)s) _ R*(&,s) ) = T(¢,s) _ T*(&,s)
(i)](é,S) _m_ ﬂ7 ¢2(§a ) m m (40)

For this case, one should use R*(—1,s) = T*(—1,s) = 0 instead of the single-valuedness conditions.
Now SIF and EDIF are determined as

Kin(b) = — }(13} V2(b—x)o,,(x,0,p) = —e"V/blewoR(1,p) + ersoT(1, p)]
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and EDF can be expressed as
1 e1s0 Ca40
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Fig. 2. Dynamic SIF for a homogeneous piezoelectric strip with only a central crack ((b + a) = ¢) under only shear impact (4 = 0)
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Fig. 3. Static SIF for the periodically edge-cracked piezoelectric strip (4 =0, i = In(0.5)).
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4. Numerical results

In this section, we investigate the transient response of periodically cracked FGPM strip. It is assumed
that the material at x = 0 are BaTiOs;, whose material constants are c449 = 4.4 X 10'°N/m?, e;50 = 11.4C/
m>, g110=128.3x107'1°C/Vm, py = 7.5 x 10*°kg/m>. The periodical cracks are assumed to be subjected to
uniform shear impact 1oH(¢) and uniform electric displacement loading DyH(t). The electromechanical cou-
pling factor A is defined as A = Dye;so/(toe110) to reflect the combination between the shear impact toH(?)
and electrical impact DoH(t).

It can be easily found that, if ¢/h — oo the numerical results will approach the general results of a pie-
zoelectric strip with only a crack. Fig. 2 shows the dynamic SIF of a piezoelectric strip with a central crack

1.6
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1.2¢
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K|||(b)/z'0h0'5

0.6}

0.4} &

0.2 . . . . . . )
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Fig. 4. Static SIF for the periodically edge-cracked piezoelectric strip (4 =0, i = In(2.0)).
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Fig. 5. Static EDF for the periodically edge-cracked piezoelectric strip (4 =0, fh = In(0.5)).



J. Chen, Z. Liu | International Journal of Solids and Structures 42 (2005) 3133-3146 3143

under only shear impact (in the numerical analysis, ¢/h = 10), and they are in good agreement with those
given by Wang and Yu (2000).

Compared to the internal crack problem, the surface crack problem is more practical. Then, all results
presented in the following part are presented for « = 0 (i.e., the surface crack problem). Note that in the
following part kyy is normalized with respect to a constant toh*> rather than the traditional factor
70b%>. At the same time, Sy is normalized with respect to a constant t34/cas.

Figs. 3 and 4 show the static SIF for the periodically edge-cracked piezoelectric strip under only shear
impact. It can be found that kg decreases with decreasing ¢/h and approaches zero as ¢/h— 0. For the case
of Bh > 0, kyyp increases with increasing crack length b/h. For the case of fh < 0, if the crack span c/h is very
small (such as ¢/h = 0.25), kyy first increases, goes through a maximum and then decreases. Since the mate-
rial properties at the different crack tip are variable, the increase or decrease of krp does not always decide

Si(b) Caso/ T°h

0.01 \ ! \ \ \ \ )

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

15,
0 1t
=
5
=)
¥ 05
0 L 1 1 1 1 1 1 1 1 J
0 1 2 3 4 5 6 7 8 9 10
ct/b

Fig. 7. Effect of b/h on dynamic SIF for the periodically edge-cracked piezoelectric strip (A = —0.2, ¢/h = 1.0, ph = In(1.0)).
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the crack propagation. As shown in Figs. 5 and 6, the static EDF always increases with increasing crack
length b/h, and it means that the crack is easier to propagate as the crack length increases.

Figs. 7 and 8 show the effect of crack length b/ and crack span ¢/h on the dynamic SIF, respectively. As
the crack length is very large (such as b/h = 0.7), the boundary effects will dominate the dynamic SIF, and
the dynamic SIF approaches the corresponding static value in a short time. With the decrease of crack span
¢/h, the oscillating cycle of dynamic SIF increases due to the wave propagation and diffraction between the
periodical cracks.

It is found that, under the combined loading, A has insignificant effect on the normalized EDIF Kp(b,t)/
Doh®>. However, as shown in Figs. 9 and 10, the electric impact plays a great role in the transient fracture
behavior. First, the applied direction of electric impact will lead to an increase or decrease in the resulting
dynamic SIF at different loading stages. Second, according to the criterion of energy density factor, the elec-
tric impact always enhances the crack extension in the piezoelectric BaTiO; strip. Third, the peak value of
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Fig. 8. Effect of ¢/h on dynamic SIF for the periodically edge-cracked piezoelectric strip (A = —0.2, b/h = 0.5, ph = In(1.0)).
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Fig. 9. Effect of 4 on dynamic SIF for the periodically edge-cracked piezoelectric strip (¢/h = 0.5, b/h = 0.5, ph =In(0.5)).
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Fig. 11. Effect of fi on dynamic EDF for the periodically edge-cracked piezoelectric strip (¢/h = 0.5, b/h =10.5, 1 =0.2).

EDF under the negative electric loading is always higher than that under the positive electric loading, and it
means that the crack is more likely to propagate under the negative electric loading than under the positive
one.

Fig. 11 illustrates the influence of material gradient parameter 2 on dynamic EDF. It can be found that,
the peak values of normalized EDF decrease with the increase of /4, and this means that the increase of S/
could impede the crack extension.
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