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Abstract

The dynamic anti-plane problem for a functionally graded piezoelectric strip containing a periodic array of parallel
cracks, which are perpendicular to the boundary, is considered. Integral transforms techniques are employed to reduce
the problem to the solution of singular integral equations. Numerical results are presented to show the influences of
geometry, electromechanical combination factor and material gradient parameter on the fracture behavior.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Since piezoelectric materials are widely used as actuators and sensors in the smart and adaptive struc-
tures. To prevent failure during service and to secure the structural integrity of piezoelectric devices, under-
standing of the fracture behaviors of these materials become increasingly important. Up to now, a number
of studies have been performed for the cracked piezoelectric materials (see e.g., Deeg, 1980; Pak, 1990;
Sosa, 1991; Suo et al., 1992; Park and Sun, 1995; Sosa and Khutoryansky, 1996; Wang and Yu, 2000;
Meguid and Chen, 2001; Kwon and Lee, 2001). Among these works, several scholars considered the frac-
ture problem of periodic cracks in the homogeneous piezoelectric medium or along the interface of
bimaterials (see, e.g., Gao and Wang, 2000; Hao, 2001; Gao et al., 2004). In order to adopt the complex
function technique to analyze these problems, the periodical cracks are generally assumed to be collinear.
0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.10.021

* Corresponding author. Tel.: +86 2168453022; fax: +86 2168453022.
E-mail address: chenjian130@yahoo.com.cn (J. Chen).

mailto:chenjian130@yahoo.com.cn 


3134 J. Chen, Z. Liu / International Journal of Solids and Structures 42 (2005) 3133–3146
In addition, since the piezoelectric materials are generally brittle and susceptible to crack, in order to
enhance the strength of piezoelectric devices and elongate their service life, the functionally graded piezo-
electric materials (FGPMs), in which the material properties are continuously varied in one or more direc-
tions, have been developed (Wu et al., 1996; Zhu et al., 2000). Accordingly the fracture behaviors of
FGPMs have become an intensive point. Wang and Noda (2001) discussed the fracture behavior of a
cracked FGMP structure under the thermal load. Li and Weng (2002), Jin and Zhong (2002) considered
the mode III Yoffe-type moving crack problem in a FGPM strip and in an infinite FGPM, respectively.
Ueda (2003) solved the static mode III crack problem in a FGPM strip bonded to two elastic layers. Kwon
(2003) studied the electrical nonlinear anti-plane shear crack in a FGPM strip. Chen et al. (2004) investi-
gated the mixed mode crack problem in a FGPM plate.
In the past, several scholars studied the elastic problem of periodical cracks in functionally graded

materials. For example, Erdogan and Ozturk (1995) studied the anti-plane problem of periodical
cracks in functionally graded coatings. Choi (1997) investigated the problem of a periodical array of
parallel cracks in a functionally graded medium under in-plane normal and shear load. However,
to the authors� knowledge, few papers considered the solutions for the problem of periodical cracks in
FGPM.
This paper considered the problem of a FGPM strip containing a periodical array of parallel cracks,

which are perpendicular to the boundary. Integral transform technique is used to reduce the problem to
the solution of singular integral equations. Numerical results are presented to discuss the possible fracture
behaviors.
2. Formulation of problem

As shown in Fig. 1, a FGPM strip, which is transversely isotropic and poled in z-direction, contains the
periodical cracks perpendicular to the boundary.
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Fig. 1. Geometry of the crack problem.
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The constitutive relations can be expressed as
rzx ¼ c44
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ox

þ e15
o/
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; Dx ¼ e15
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ox

� e11
o/
ox

; Ex ¼ � o/
ox

rzy ¼ c44
ow
oy

þ e15
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oy

� e11
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oy

; Ey ¼ � o/
oy

ð1Þ
where w and / are the mechanical displacement and electric potential; rzk, Dk, Ek (k = x,y) are the com-
ponents of anti-plane shear stresses, in-plane electric displacements and electric fields; c44, q, e15, e11 are the
shear modulus, mass density, piezoelectric coefficient and dielectric parameter, respectively.
It is assumed that the shear modulus, mass density, piezoelectric coefficient and dielectric parameter of

FGPM coating vary smoothly according to exponential function along the thickness direction (e.g., Erdo-
gan and Ozturk, 1995; Kwon, 2003). To make the analysis tractable, the focus is limited on a special class of
FGPMs in which the variations of theses properties are in the same gradient.
Therefore,
c44 ¼ c440ebx; e15 ¼ e150ebx; e11 ¼ e110e
bx; q ¼ q0e

bx ð2Þ
where c440, q0, e150, e110 are the material properties at x = 0. By introducing the Bleustein function (Bleu-
stein, 1968) given by w = /�(e150/e110)w in the form, the governing equations may be expressed as
r2wþ b
ow
ox

¼ c�22
o2w
ot2

; r2w þ b
ow
ox

¼ 0

/ðx; y; tÞ ¼ e150
e110

wðx; y; tÞ þ wðx; y; tÞ
ð3Þ
where $2 = o2/ox2 + o2/oy2 is the two-dimensional Laplace operator, and the shear wave speed of the pie-
zoelectric is
c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l0=q0

p
ð4Þ
where l0 ¼ c440 þ e2150=e110.
When the crack surfaces are assumed to be electrically permeable, it is found that the fracture behavior

of piezoceramics will be independent of electrical loading (see, e.g., Wang and Yu, 2000), and this is con-
trary to many existing experimental results. Therefore, the electrically impermeable crack face condition is
adopted here.
We will assume that through a superposition the problem is reduced to a local perturbation problem in

which self-equilibrating crack surface tractions are the only non-vanishing external loads. Because of peri-
odicity, it is sufficient to consider the problem for 0 < y < c only. Thus, the boundary and continuity con-
ditions can be written as
wðx; c; tÞ ¼ /ðx; c; tÞ ¼ 0; 0 < x < h ð5Þ

rzxð0; y; tÞ ¼ Dxð0; y; tÞ ¼ 0; 0 < y < c ð6Þ

rzxðh; y; tÞ ¼ Dxðh; y; tÞ ¼ 0; 0 < y < c ð7Þ

rzyðx; 0; tÞ ¼ sðxÞHðtÞ; Dyðx; 0; tÞ ¼ DðxÞHðtÞ; a < x < b ð8Þ

wðx; 0; tÞ ¼ /ðx; 0; tÞ ¼ 0; 0 < x < a; b < x < h ð9Þ
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3. Integral equations

Let the Laplace transform pair be written as:
f �ðsÞ ¼
Z 1

0

f ðtÞe�st dt; f ðtÞ ¼ 1

2pi

Z
Br
f �ðsÞest ds ð10Þ
in which Br stands for the Bromwich path of integration. The variable t in Eqs. (3) can be eliminated by the
application of Eq. (10). By expressing the solution of Eqs. (3) in terms of the sums of finite and infinite Fou-
rier transforms, it can be shown that
w�ðx; y; sÞ ¼ 1

2p

Z 1

�1
½A1ða; sÞem1y þ A2ða; sÞem2y 
e�iax da þ

X1
1

½B1kðck; sÞep1kx þ B2kðck; sÞep2kx
 sinðckyÞ

w�ðx; y; sÞ ¼ 1

2p

Z 1

�1
½C1ða; sÞen1y þ C2ða; sÞen2y 
e�iax da þ

X1
1

½D1kðck; sÞeq1kx þ D2kðck; sÞeq2kx
 sinðckyÞ

/�ðx; y; sÞ ¼ e150
e110

w�ðx; y; sÞ þ w�ðx; y; sÞ

ð11Þ
where A1,2(a, s), B1k(ck, s), B2k(ck, s), C1,2(a, s), D1k(ck, s), and D2k(ck, s) are unknown functions to be deter-
mined and
m1 ¼ �m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ iba þ s2=c22

q
; n1 ¼ �n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ iba

p
; ck ¼ kp=c

p1k ¼ �b=2� kk; p2k ¼ �b=2þ kk; kk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k þ b2=4þ s2=c22

q

q1k ¼ �b=2� k0
k; q2k ¼ �b=2þ k0

k; k0
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k þ b2=4

q
ð12Þ
From Eqs. (1), (2) and (11), the stresses and electric displacements are obtained as follows:
r�
zx

ebx
¼ 1

2p

Z 1

�1
�ia½l0ðA1em1y þ A2em2yÞ þ e150ðC1en1y þ C2en2yÞ
e�iax da

þ
X1
1

½l0ðB1kp1kep1kx þ B2kp2ke
p2kxÞ þ e150ðD1kq1keq1kx þ D2kq1ke

q2kxÞ
 sinðckyÞ

r�
zy

ebx
¼ 1

2p

Z 1

�1
½l0ðA1m1em1y þ A2m2em2yÞ þ e150ðC1n1en1y þ C2n2en2yÞ
e�iax da

þ
X1
1

½l0ðB1kep1kx þ B2kep2kxÞ þ e150ðD1keq1kx þ D2keq2kxÞ
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x

ebx
¼ 1

2p

Z 1

�1
ia½e110ðC1en1y þ C2en2yÞ
e�iax da þ

X1
1

½�e110ðD1kq1keq1kx þ D2kq2ke
q2kxÞ
 sinðckyÞ

D�
y

ebx
¼ 1

2p

Z 1

�1
½�e110ðC1n1en1y þ C2n2en2yÞ
e�iax da þ

X1
1

½�e110ðD1keq1kx þ D2keq2kxÞ
ck cosðckyÞ

ð13Þ
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Introducing the following functions
g1ðx; sÞ ¼

ow�ðx; 0; sÞ
ox

a < x < b

0 x < a; x > b

8>><
>>:

; g2ðx; sÞ ¼
o/�ðx; 0; sÞ

ox
a < x < b

0 x < a; x > b

8<
: ð14Þ
and substituting Eqs. (11) into (14), from Eqs. (5) and (9) it follows that
A1ða; sÞ ¼ � i
a

em2c

em1c � em2c
Z b

a
g1ðu; sÞeiau du

A2ða; sÞ ¼
i

a
em1c

em1c � em2c
Z b

a
g1ðu; sÞeiau du

C1ða; sÞ ¼ � i
a

en2c

en1c � en2c
Z b

a
� e150

e110 g1ðu; sÞ þ g2ðu; sÞ
h i

eiau du

C2ða; sÞ ¼
i

a
en1c

en1c � en2c
Z b

a
� e150

e110 g1ðu; sÞ þ g2ðu; sÞ
h i

eiau du

ð15Þ
If we now substitute from Eqs. (13) and (15) into Eqs. (6) and (7) it can be shown that
B1jp1j þ B2jp2j ¼ �
cj
ckj

Z b

a
g1ðu; sÞe�p2ju du

D1jq1j þ D2jq2j ¼ �
cj
ckj

Z b

a
� e150

e110 g1ðu; sÞ þ g2ðu; sÞ
h i

e�q2ju du

B1jp1je
p1jh þ B2jp2je

p2jh ¼ �
cj
ckj

Z b

a
g1ðu; sÞep1jðh�uÞ du

D1jq1je
q1jh þ D2jq2je

q2jh ¼ �
cj
ckj

Z b

a
� e150

e110 g1ðu; sÞ þ g2ðu; sÞ
h i

eq1jðh�uÞ du

ð16Þ
From Eqs. (16), the unknown B1j, B2j, D1j and D2j may then be obtained as follows:
B1j ¼
cj

ckjp1jðep1jh � ep2jhÞ

Z b

a
½ep2jðh�uÞ � ep1jðh�uÞ
g1ðu; sÞdu

B2j ¼
cj

ckjp2jðep1jh � ep2jhÞ

Z b

a
½ep1jðh�uÞ � ep1jh�p2ju
g1ðu; sÞdu

D1j ¼
cj

ck0
jq1jðeq1jh � eq2jhÞ

Z b

a
½eq2jðh�uÞ � eq1jðh�uÞ
 � e150

e110 g1ðu; sÞ þ g2ðu; sÞ
h i

du

D2j ¼
cj

ck0
jq2jðeq1jh � eq2jhÞ

Z b

a
½eq1jðh�uÞ � eq1jh�q2ju
 � e150

e110 g1ðu; sÞ þ g2ðu; sÞ
h i

du

ð17Þ
By substituting Eqs. (17) into Eqs. (13), we obtain
r�
zyðx; 0þ; sÞ
ebx

¼ sðxÞ
sebx

¼ lim
y!0þ

1

p

Z b

a
½l0ðF 1 þ F 2Þ �

e2150
e110 ðF

0
1 þ F 0

2Þ
g1ðu; sÞ þ e150ðF 0
1 þ F 0

2Þg2ðu; sÞ
� 


du

D�
yðx; 0þ; sÞ
ebx

¼ DðxÞ
sebx

¼ lim
y!0þ

1

p

Z b

a
fe150ðF 0

1 þ F 0
2Þg1ðu; sÞ � e110ðF 0

1 þ F 0
2Þg2ðu; sÞgdu

ð18Þ
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where
F 1ðx; y; s; uÞ ¼
1

2

Z 1

�1

i

a
m2em1cþm2y � m1em2cþm1y

em1c � em2c eiaðu�xÞ da

F 0
1ðx; y; s; uÞ ¼

1

2

Z 1

�1

i

a
n2en1cþn2y � n1en2cþn1y

en1c � en2c eiaðu�xÞ da

F 2ðx; y; s; uÞ ¼
p
c

X1
j¼1

F 2j cosðcjyÞ; F 0
2ðx; y; s; uÞ ¼

p
c

X1
j¼1

F 0
2j cosðcjyÞ

ð19Þ
and
F 2j ¼
c2j

kjp1jp2jðep1jh � ep2jhÞ
p2je

p1jx½ep2jðh�uÞ � ep1jðh�uÞ
 � p1je
p2jx½ep1jh�p2ju � ep1jðh�uÞ


� �

F 0
2j ¼

c2j
k0
jq1jq2jðeq1jh � eq2jhÞ

q2je
q1jx½eq2jðh�uÞ � eq1jðh�uÞ
 � q1je

q2jx½eq1jh�q2ju � eq1jðh�uÞ

� � ð20Þ
Eqs. (18) would then provide the integral equation to evaluate g1(x, s) and g2(x, s). In order to determine
the correct singularity of the unknown functions g1(x, s) and g2(x, s) and to develop an efficient method to
solve the integral equations, the singular behavior of the kernels F1, F

0
1, F2 and F 0

2 must be examined. Note
that for a ! 1 we have
m1 !j a j; m2 ! � j a j; n1 !j a j; n2 ! � j a j ð21Þ

and then
F 1ðx; y; s; uÞ ¼
ðu� xÞ

ðu� xÞ2 þ y2
þ 1
2

Z 1

�1

i

a
m2em1cþm2y � m1em2cþm1y

em1c � em2c þ j a j ejayj
� �

eiaðu�xÞ da

F 0
1ðx; y; s; uÞ ¼

ðu� xÞ
ðu� xÞ2 þ y2

þ 1
2

Z 1

�1

i

a
n2en1cþn2y � n1en2cþn1y

en1c � en2c þ aj je ayj j
� �

eiaðu�xÞ da

ð22Þ
which, for y ! 0 becomes
F 1ðx; 0; s; uÞ ¼
1

u� x
þ F 1Bðx; 0; s; uÞ

F 0
1ðx; 0; s; uÞ ¼

1

u� x
þ F 0

1Bðx; 0; s; uÞ
ð23Þ
where
F 1Bðx; 0; s; uÞ ¼
1

2

Z 1

�1

i

a
m2em1c � m1em2c

em1c � em2c þ j a j
� �

eiaðu�xÞ da

F 0
1Bðx; 0; s; uÞ ¼

1

2

Z 1

�1

i

a
n2en1c � n1en2c

en1c � en2c þ j a j
� �

eiaðu�xÞ da

ð24Þ
The kernels F2 and F 0
2 are given in terms of infinite series. Therefore any singular behaviors F2 and F 0

2

may have would be due to the asymptotic nature of these series. From Eqs. (12) it may be seen that for
j! 1 we have
kj ! cj; p1j ! �cj; p2j ! cj; k0
j ! cj; q1j ! �cj; q2j ! cj ð25Þ
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If we now let
F 2ðx; y; s; uÞ ¼ F 21ðx; y; s; uÞ þ F 2Bðx; y; s; uÞ

F 0
2ðx; y; s; uÞ ¼ F 0

21ðx; y; s; uÞ þ F 0
2Bðx; y; s; uÞ

ð26Þ
and use Eq. (25), the asymptotic series F21 and F 0
21 may be expressed as
F 21ðx; y; s; uÞ ¼ F 0
21ðx; y; s; uÞ ¼

p
c

Xn

j¼1
e�cjðuþxÞ cosðcjyÞ ¼

p
c

epðuþxÞ=c cosðpy=cÞ � 1
½epðuþxÞ=c � cosðpy=cÞ
2 þ sin2ðpy=cÞ

ð27Þ
For y = 0, (27) becomes
F 21ðx; 0; s; uÞ ¼ F 0
21ðx; 0; s; uÞ ¼

p
c

1

epðuþxÞ=c � 1 ð28Þ
We further note that for small values of (u + x) (28) has the following asymptotic form:
F 21ðx; 0; s; uÞ ¼ F 0
21ðx; 0; s; uÞ ¼

1

uþ x
þOðuþ xÞ ð29Þ
Eqs. (18) may then be expressed as
sðxÞ
sebx

¼ 1
p

Z b

a

c440
u� x

þ l0kðu; x; sÞ �
e2150
e110 k

0ðu; x; sÞ
� �

g1ðu; sÞ þ e150
1

u� x
þ k0ðu; x; sÞ

� �
g2ðu; sÞ

� 

du

DðxÞ
sebx

¼ 1
p

Z b

a
e150

1

u� x
þ k0ðu; x; sÞ

� �
g1ðu; sÞ � e110

1

u� x
þ k0ðu; x; sÞ

� �
g2ðu; sÞ

� 

du

ð30Þ

where
kðu; x; sÞ ¼ F 1Bðx; 0; s; uÞ þ F 2Bðx; 0; s; uÞ þ F 21ðx; 0; s; uÞ

k0ðu; x; sÞ ¼ F 0
1Bðx; 0; s; uÞ þ F 0

2Bðx; 0; s; uÞ þ F 0
21ðx; 0; s; uÞ

ð31Þ
and
F 2Bðx; 0; s; uÞ ¼
p
c

Xn

j¼1
½F 2j � e�cjðuþxÞ
; F 0

2ðx; 0; s; uÞ ¼
p
c

Xn

j¼1
½F 0
2j � e�cjðuþxÞ
 ð32Þ
The integral equations (30) will be solved for different crack types, that is, for internal crack and edge
crack problem. To solve this integral equation for the case of an internal crack, one must also implement
the single valuedness condition
Z b

a
g1ðu; sÞdu ¼ 0;

Z b

a
g2ðu; sÞdu ¼ 0 ð33Þ
Defining the following normalized quantities:
u ¼ b� a
2

n þ bþ a
2

; x ¼ b� a
2

g þ bþ a
2

; �1 < ðn; gÞ < 1

g1ðu; sÞ ¼ /1ðn; sÞ; g2ðu; sÞ ¼ /2ðn; sÞ; Kðn; g; sÞ ¼ b� a
2

kðu; x; sÞ; K 0ðn; g; sÞ ¼ b� a
2

k0ðu; x; sÞ

� sðxÞ
ebx

¼ f1ðgÞ; �DðxÞ
ebx

¼ f2ðgÞ

ð34Þ
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the integral equations (30) can be written to accommodate both internal and edge crack problem where
a = 0
f1ðgÞ
s

¼ 1
p

Z b

a

c440
n � g

þ l0Kðn; g; sÞ �
e2150
e110 K

0ðn; g; sÞ
� �

/1ðn; sÞ þ e150
1

n � g
þ K 0ðn; g; sÞ

� �
/2ðn; sÞ

� 

du

f2ðgÞ
s

¼ 1
p

Z b

a
e150

1

n � g
þ K 0ðn; g; sÞ

� �
/1ðn; sÞ � e110

1

n � g
þ K 0ðn; g; sÞ

� �
/2ðn; sÞ

� 

du

ð35Þ

For the internal crack problem, defining
/1ðn; sÞ ¼
Rðn; sÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ; /2ðn; sÞ ¼
T ðn; sÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p � 1 < n < 1 ð36Þ
and using the Lobatto–Chebyshev integration formula, the singular integral equations (35) and the single-
valuedness condition (33) are reduced to an 2n · 2n system of liner equations in terms of discrete values of
/1(nj, s) and /2(nj, s) (j = 1, . . .,n) that are then solved numerically.
After determining /1(n, s) and /2(n, s) the stress intensity factors (SIFs) and electric displacement inten-

sity factors (EDIFs) are determined as
K�
IIIða; sÞ ¼ limx!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� aÞ

p
r�
yzðx; 0; sÞ ¼ eba

ffiffiffiffiffiffiffiffiffiffiffi
b� a
2

r
½c440Rð�1; sÞ þ e150T ð�1; sÞ


K�
IIIðb; sÞ ¼ � lim

x!b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb� xÞ

p
r�
yzðx; 0; sÞ ¼ �ebb

ffiffiffiffiffiffiffiffiffiffiffi
b� a
2

r
½c440Rð1; sÞ þ e150T ð1; sÞ


K�
Dða; sÞ ¼ limx!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� aÞ

p
D�

yðx; 0; sÞ ¼ eba
ffiffiffiffiffiffiffiffiffiffiffi
b� a
2

r
½e150Rð�1; sÞ � e110T ð�1; sÞ


K�
Dðb; sÞ ¼ � lim

x!b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb� xÞ

p
D�

yðx; 0; sÞ ¼ ebb
ffiffiffiffiffiffiffiffiffiffiffi
b� a
2

r
½e150Rð1; sÞ � e110T ð1; sÞ


ð37Þ
Recently, some investigators found that the energy density factor (EDF) is an essential quantity for ana-
lyzing the piezoelectric crack growth behavior (Sih and Zuo, 2000; Zuo and Sih, 2000; Soh et al., 2001;
Chen et al., 2004). For the anti-plane problem, the energy density factor is defined as
SIII ¼ lim
r!0

r
2
ðszxezx þ szyeyx þ DxEx þ DyEyÞ ð38Þ
in which r has been referred to as the core region within which microstructure effects become important.
For the internal crack problem, EDF can be expressed in terms of SIF and EDIF as
SIIIða; tÞ ¼
1

8l0eba
K2IIIða; tÞ �

e150
e110 KIIIða; tÞKDða; tÞ þ 2

c440
e110 K

2
Dða; tÞ

h i

SIIIðb; tÞ ¼
1

8l0ebb
K2IIIðb; tÞ �

e150
e110 KIIIðb; tÞKDðb; tÞ þ 2

c440
e110 K

2
Dðb; tÞ

h i ð39Þ
It can be easily found that EDF is always positive. For the pure mechanical case, EDF is equivalent to
the traditional definition of energy release rate.
In the case of an edge crack at x = 0 the kernel F21(x, 0, s,u) and F 0

21ðx; 0; s; uÞ are singular and with
1/(u � x) constitute a generalized Cauchy kernel. At this time, the unknown density function /1(n, s) and
/2(n, s) can be expressed in the form



Fig. 2.
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/1ðn; sÞ ¼
Rðn; sÞffiffiffiffiffiffiffiffiffiffiffi
1� n

p ¼ R�ðn; sÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ; /2ðn; sÞ ¼
T ðn; sÞffiffiffiffiffiffiffiffiffiffiffi
1� n

p ¼ T �ðn; sÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ð40Þ
For this case, one should use R*(�1,s) = T*(�1,s) = 0 instead of the single-valuedness conditions.
Now SIF and EDIF are determined as
K�
IIIðbÞ ¼ � lim

x!b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb� xÞ

p
r�
yzðx; 0; pÞ ¼ �ebb

ffiffiffi
b

p
½c440Rð1; pÞ þ e150T ð1; pÞ


K�
DðbÞ ¼ � lim

x!b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb� xÞ

p
D�

yðx; 0; pÞ ¼ ebb
ffiffiffi
b

p
½e150Rð1; pÞ � e110T ð1; pÞ


ð41Þ
and EDF can be expressed as
SIIIðb; tÞ ¼
1

8l0ebb
K2IIIðb; tÞ �

e150
e110 KIIIðb; tÞKDðb; tÞ þ 2

c440
e110 K

2
Dðb; tÞ

h i
ð42Þ
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Fig. 3. Static SIF for the periodically edge-cracked piezoelectric strip (k = 0, bh = ln(0.5)).
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4. Numerical results

In this section, we investigate the transient response of periodically cracked FGPM strip. It is assumed
that the material at x = 0 are BaTiO3, whose material constants are c440 = 4.4 · 1010N/m2, e150 = 11.4C/
m2, e110 = 128.3 · 10�10C/Vm, q0 = 7.5 · 103kg/m3. The periodical cracks are assumed to be subjected to
uniform shear impact s0H(t) and uniform electric displacement loading D0H(t). The electromechanical cou-
pling factor k is defined as k = D0e150/(s0e110) to reflect the combination between the shear impact s0H(t)
and electrical impact D0H(t).
It can be easily found that, if c/h ! 1 the numerical results will approach the general results of a pie-

zoelectric strip with only a crack. Fig. 2 shows the dynamic SIF of a piezoelectric strip with a central crack
K
II

I(b
)/

τ 0
h0.

5

b/h
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.50
1.00

c/h=0.25

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 4. Static SIF for the periodically edge-cracked piezoelectric strip (k = 0, bh = ln(2.0)).
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under only shear impact (in the numerical analysis, c/h = 10), and they are in good agreement with those
given by Wang and Yu (2000).
Compared to the internal crack problem, the surface crack problem is more practical. Then, all results

presented in the following part are presented for a = 0 (i.e., the surface crack problem). Note that in the
following part kIII is normalized with respect to a constant s0h

0.5 rather than the traditional factor
s0b

0.5. At the same time, SIII is normalized with respect to a constant s20h=c440.
Figs. 3 and 4 show the static SIF for the periodically edge-cracked piezoelectric strip under only shear

impact. It can be found that kIII decreases with decreasing c/h and approaches zero as c/h!0. For the case
of bh > 0, kIII increases with increasing crack length b/h. For the case of bh < 0, if the crack span c/h is very
small (such as c/h = 0.25), kIII first increases, goes through a maximum and then decreases. Since the mate-
rial properties at the different crack tip are variable, the increase or decrease of kIII does not always decide
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Fig. 6. Static EDF for the periodically edge-cracked piezoelectric strip (k = 0, bh = ln(2.0)).
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the crack propagation. As shown in Figs. 5 and 6, the static EDF always increases with increasing crack
length b/h, and it means that the crack is easier to propagate as the crack length increases.
Figs. 7 and 8 show the effect of crack length b/h and crack span c/h on the dynamic SIF, respectively. As

the crack length is very large (such as b/h = 0.7), the boundary effects will dominate the dynamic SIF, and
the dynamic SIF approaches the corresponding static value in a short time. With the decrease of crack span
c/h, the oscillating cycle of dynamic SIF increases due to the wave propagation and diffraction between the
periodical cracks.
It is found that, under the combined loading, k has insignificant effect on the normalized EDIF KD(b, t)/

D0h
0.5. However, as shown in Figs. 9 and 10, the electric impact plays a great role in the transient fracture

behavior. First, the applied direction of electric impact will lead to an increase or decrease in the resulting
dynamic SIF at different loading stages. Second, according to the criterion of energy density factor, the elec-
tric impact always enhances the crack extension in the piezoelectric BaTiO3 strip. Third, the peak value of
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Fig. 8. Effect of c/h on dynamic SIF for the periodically edge-cracked piezoelectric strip (k = �0.2, b/h = 0.5, bh = ln(1.0)).
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EDF under the negative electric loading is always higher than that under the positive electric loading, and it
means that the crack is more likely to propagate under the negative electric loading than under the positive
one.
Fig. 11 illustrates the influence of material gradient parameter bh on dynamic EDF. It can be found that,

the peak values of normalized EDF decrease with the increase of bh, and this means that the increase of bh
could impede the crack extension.
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